
Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 65

Comparative Analysis of Various Cost Models on

the basic of Certain Parameters

Khari A. Armih

Al-zawiya College of Computer Technology

Khari.armih@gmail.com

 Moktar M. Lahrashe

Al-zawiya College of Computer Technology

mlahrashe@gmail.com

Abstract

With the growth in heterogeneity, the current focus of designing

parallel performance cost models is on providing low-level details of

parallel execution to the programs to enable resource-aware

partitioning and dynamic load balancing procedures, in particular, for

heterogeneous parallel architectures.

This Paper presents a survey of a classification of current and

emerging cost models for parallel and distributed environments as

well as algorithmic skeletons, and addressing major challenges such as

complexity, target architectures, Optimisation and Skeleton-based

Approachs.

Keyword: Parallel, heterogeneous, Algorithmic skeletons, Cost model

mailto:Khari.armih@gmail.com
mailto:mlahrashe@gmail.com

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 66

1. Introduction

Models of parallel computation play an important role in designing

and optimising parallel algorithms and applications. These models

assist the developer in understanding all-important aspects of the

underlying architecture without knowing unnecessary details.

Moreover, parallel computational models ware used to predict the

performance of a given parallel program on a given parallel machine.

The common way of predicting the performance of parallel program is

to derive a symbolic mathematical formula that describes the

execution time of that program. This formula has a set of parameters

that usually include the size of program, number of processors, and

other hardware and algorithm characteristics that affect the execution

time of the program. These parameters will be given by a

programmer, benchmarking, or profiling tools.

Skeleton-based and similarly structured frameworks have employed

these parallel computational models to predict the performance of the

parallel algorithms in the early stages of the design process.

Consequently, these computational models can assist and guide

scheduling algorithmic skeletons on a wide variety of architectures.

Several parallel computational models had been developed for

parallel-distributed systems to guide parallel algorithm designers.

Good general surveys of early research are given in [5, 6, 7, 10] and a

more recent survey is given in [8].

In this paper, we survey several well-known parallel cost models that

have been proposed for parallel and distributed environments as well

as algorithmic skeletons.

Finally, this survey doesn’t aim to give a comprehensive survey of

cost models, which would be much beyond the scope of this report,

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 67

but we classify and discuss essential aspects of the existing

performance cost models, and give references for further reading.

2. The Family of PRAM Models

The most widely-used cost model in parallel computing is the Parallel

Random Access Machine (PRAM) model [9]. The PRAM model was

based on the RAM model [10] of sequential computation. The model

consists of a global shared memory and a set of sequential processors

that operate synchronously. The model assumes that at each

synchronous step, each processor can access any memory location in

one unit time regardless of the memory location. The PRAM model

provides a useful guide for parallel algorithm designers and thereby

allows them to ignore all the architecture details of the underlying

hardware and concentrate on application-specific issues.

Despite the useful basis provided by the PRAM model for parallel

algorithm design, it cannot reflect all the costs of a real parallel

machine. This results in non-portable programs due to a number of

assumptions made by the model by ignoring the cost of some parallel

activities such as synchronisation, memory contention, and

communication latency or bandwidth.

Therefore, several realistic variants of PRAM-based models have been

introduced to make PRAM more practical. These variants attempt to

account for the cost issues of real parallel machines. For example,

models such as Block PRAM (BPRAM) [11], Local-Memory PRAM

(LPRAM) [12], and Asynchronous PRAMs [13] seek to include the

latency cost with the standard PRAM model.

Another PRAM variant is asynchronous PRAMs that add some degree

of asynchrony into the basic PRAM model in order to ease the

restriction on processors synchronisation. These models differ in the

way of the processors are synchronised. They include the

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 68

Asynchronous Parallel Random Access Machine model (APRAM)

[14] that addresses the synchronisation assumption of the basic PRAM

model to allow asynchronous execution, and the Hierarchical PRAM

(HPRAM) model [15], which uses the PRAM model as a sub-model,

consists of a collection of synchronous PRAMs that operate

asynchronously from each other. Another asynchronous model by

Gibbons et al. [16] allows the processors to run in an asynchronous

manner.

The CRCW PRAM model [17] and the QRQW PRAM model [18, 19]

account for memory locations contention, where the read and write to

shared memory locations are done concurrently.

3. BSP and Variants

The Bulk Synchronous Parallel (BSP) model [20, 21] is a parallel

computation model that provides a simple way of writing parallel

programs for a wide range (architecture-independent) of parallel

architectures by offering a bridging model that links software and

architecture. In addition, it provides a straightforward way for realistic

performance prediction for application design on a variety of different

parallel architectures including distributed-memory systems, shared-

memory multiprocessors, and networks of workstations. Practically,

the BSP model aims to provide a bridge model between the software

and hardware.

The BSP model consists of a collection of processors that

communicate using message passing. The computations in the BSP

model are formulated as a series of super steps. Conceptually, each

super step is divided into three stages. In the first stage, all processors

concurrently compute using only local data. In the second stage,

processors exchange messages with each other. In the third stage, all

of the processors execute a barrier synchronisation, after they finished

sending and receiving messages.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 69

Compared with the PRAM model the BSP model is more realistic,

since it accounts for two cost issues of the real parallel machines,

namely communication cost and memory latency cost.

Since BSP programs are based on sequential super steps, the model

provides a very straightforward approach to cost estimation by firstly,

calculating the cost of each super step, and secondly, calculating the

cost of the whole BSP program by summing the cost of the super

steps. The cost of each super step in a BSP program is given by:

Where w reflects the cost of the longest running local computation in

any of the processors, l is a constant cost (the cost of the barrier

synchronisation) that depends on the performance of the underlying

hardware, h is the number of messages sent or received per processor

and g captures the measurement of the ability of the communication

network to deliver these messages. A number of parallel

implementations have been proposed using the BSP model [22, 23,

24, 25];

4. The LogP Model Family

LogP [29, 30] is an architecture-independent parallel computation

model for designing and analysing parallel algorithms. It is a model

for distributed-memory multiprocessors where processors

communicate using message passing. LogP provides a good balance

between abstraction and simplicity by using a few parameters to

characterise the parallel computers and enabling the user to ignore all

unnecessary details.

Like the BSP model, LogP is more realistic, since both models try to

capture the communication latency and bandwidth through parameters

[31], and both models allow the processors to work in a completely

asynchronous manner.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 70

Nevertheless, the LogP model gives a more realistic picture than BSP,

since LogP has more control over the machine resources by capturing

the communication overhead. Furthermore, LogP can be use in

parallel systems that are constructed from a collection of complete

computers connected by a communication network.

Conceptually, the LogP model consists of a collection of sequential

processors interacting through a communication network by

exchanging messages, where each processor has direct access to a

local memory. The parallel program is executed in an asynchronous

way by all processors in the LogP machine.

The LogP model seeks to capture the communication network cost by

describing the parallel computer in terms of four elements:

P: the machine’s number of processors.

g: communication bandwidth for short message (gap).

L: communication delay (latency).

o: communication overhead (overhead) .

The latency is an upper bound on the time required to send a message

from a source processor to its target processor. The overhead is the

fixed amount of time that a processor requires to prepare for sending

or receiving a message; during this time, the processor cannot perform

other operations. The gap is the minimum time interval between

sending two messages on the same processor. The gap is the inverse

of the available per-processor communication bandwidth for a short

message. Several researchers [31, 32, 33] have shown that the LogP

model delivers good and accurate predictions for small messages. A

number of different extensions of the classic LogP model have been

developed to improve prediction accuracy by addressing different

communication network issues:

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 71

4.1 LogGP

The LogGP model by Alexandrov et al.[34, 35] is an extension of the

basic LogP model. Since LogP facilitates only short-message

communication transmission between processors and ignores long

messages, the LogGP model extended LogP to provide a simple linear

model that can model both short- and long-messages.

Just as in the original LogP model, LogGP is developed for distributed

memory multiprocessors, where each processor has access to local

memory. The processors work in an asynchronous way and

communicate with other processors by point-to-point messages.

LogGP uses the parameters (latency, overhead, gap, and number of

processors) that were introduced by the LogP model to characterise

communication performance. In addition, it introduces a new

additional parameter, Gap per byte, G, which captures the

communication bandwidth for long message. Thus, the LogGP model

uses 1/g for short message and 1/G for long message. In the LogP

model, sending a k bytes message between two processors requires

sending [k/w] messages, where w is the underlying message size of

the machine. This takes:

 ([

]) ()

While sending everything as a single large message in the LogGP

model takes:

 ()

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 72

4.2 LogGPS

The LogGPS model [36] is a parallel computational model that

extends LogGP to include the synchronisation cost. As in the original

LogP model, LogGP eliminates the synchronisation cost that is needed

in other models such as PRAM and BSP. This elimination might make

LogGP not accurate enough, while it ignores the need for

synchronisation when sending a long message in programs that use

high-level communication libraries such as MPI. The LogGPS model

has been proposed to address this shortcoming in LogGP.

Sending a long message between two processors is often performed by

sending a small message to the receiver to check if it is ready to

receive the original message. The process causes the sender processor

to be synchronised with the receiver processor and adds a

synchronisation cost to the overhead. Thus, the LogGPS model adds

one additional parameter, S, which reflects the message-size threshold

for synchronising sends.

4.3 HLogGP

Another extension of the LogGP model is the Heterogeneous LogGP

[37] model. HLogGP has been specifically proposed for

heterogeneous parallel systems to capture the heterogeneity in both

communication networks and computational nodes. Since the

underlying architecture of the LogGP model is very similar to the

cluster architecture, it is considered an appropriate starting point for

developing HLogGP.

The HLogGP model extends LogGP by transforming its scalar

parameters into matrices. Conceptually, the parameters for overhead

and gap are replaced by vector parameters, and latency and Gap is

replaced by matrix parameters. Furthermore, to capture the

heterogeneity in the computational nodes, the parameter for the

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 73

number of processors is replaced by a computational power vector,

which describes the physical features for every node in the system.

The model has been shown to deliver an accurate prediction on

heterogeneous clusters.

4.4 Other LogP extension

Besides the previously mentioned LogP extensions, other extensions

have been proposed that aim to address different issues in

communication. We briefly discuss some here:

LogP-HMM [38] is a parallel computational model based on the

LogP model. The idea of LogP-HMM is to develop an accurate model

that accounts for the impact of both network communication and

multilevel memory on the performance of parallel algorithms and

applications. Therefore, the LogP HMM model extends LogP with the

HMM model [39], where the LogP model deals with network

communication and the HMM model addresses the memory hierarchy.

LoGPC [40] is a simple model that extends LogP and its extension

LogGP to address another aspect of communication networks. It uses

the features of both models to account for short message as well as

long message bandwidth. Practically, the LoGPC model is intended to

capture the impact of message transmissions of size m.

Parametrised LogP [41] or (pLogP for short) is a slight extension of

the LogP and LogGP models. This model can accurately predict the

completion time of collective operations in message passing models

such as MPI.

Five parameters are used in the pLogP model to characterised the

network. Like the LogP model, it uses P as the number of processors

and L is the end-to-end latency, but the original parameters o and g are

replaced by a function of message size, where os (m) and or (m) are

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 74

the sender and receiver overheads of the message size m, and g(m) is

the delay between consecutive message transmissions of size m.

5. HiHCoHP

The HiHCoHP model [42, 43] is a realistic communication model for

hyperclusters (multi-level clusters of clusters of processors) with

heterogeneous processors. It aims to capture the important features of

a real hypercluster such as bandwidth and transmission cost.

The HiHCoHP model is based on several parameters that reflect the

heterogeneity of hyperclusters:

• Pi (“computing power”): HiHCoHP considers the computing power

as N heterogeneous nodes that may differ in computational power

(computation and memory speed).

• (“ message processing”): the Pa and Pb set up fixed communication

cost is (σa
 (k)

 + σb
(k)

); and the cost of message packing in Pa is πa
(k)

and message unpacking in Pb is πb
(k)

 .

• λ
(k)

 (“network latency”): or the end-to-end latency is the amount that

is required to send one packet between the source node and

destination node at level-k of the network.

• β
(k)

 (“link-bandwidth”): the amount of data that can be sent between

two nodes at level-k of the network.

• k
(k)

(“Network capacity”): the maximum number of packets that can

be transmitted at once.

So the total end-to-end communication time of sending p-packet

message from node Pa to node Pb is given by:

 (σa
(k)

 + σb
(k)

) + (πa
(k)

 + πb
(k)

)p + λ
(k)

 + ∆(p)

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 75

Where ∆(p) = (p−1)/β
(k)

 in a pipeline network, and ∆(p) = λ
(k)

(p−1) in

a store-and-forward network.

6. DRUM

Another type of parallel computational model are architectures-aware

cost models. One of the well-known models is the Dynamic Resource

Utilisation Model [44, 45] or (DRUM). DRUM is developed to

support resource-aware load balancing in a heterogeneous

environment such as clusters and hierarchical clusters (clusters of

clusters, or clusters of multiprocessors).

DRUM accounts for the capabilities of both network and computing

resources. In particular, DRUM is intended to encapsulate information

about the underlying hardware, and provide monitoring facilities for

hardware capabilities evaluation. Benchmarks are used to assess the

capabilities of computational, memory and communication resources.

Each node in the tree structure of the DRUM model has been given a

single value called “power”, which represents the portion size of the

total load that can be assigned to that node based on its processing and

communication power.

The power of node n in the DRUM model is calculated as the

weighted sum of processing power pn and communication power cn:

 powern = wn
comm

 cn + wn
cpu

 pn, wn
comm

 + wn
cpu

 = 1

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 76

7. Skeletons

To improve the performance of parallel applications, performance cost

models are associated with algorithmic skeletons to accurately predict

the costs of parallel applications. More precisely, the aim of these

performance models is to assist the parallel skeletons, either implicitly

or explicitly, to guide scheduling on a wide variety of architectures.

This section deals with skeleton-associated performance cost models.

Several skeleton-based and similarly structured frameworks have

employed performance cost models for various kinds of skeletons.

Some of the skeleton-based frameworks employ the well-known cost

models and their variants such as the models that were previously

mentioned, and others use their own performance prediction tools to

estimate the performance of a given program.

Here, we briefly outline the skeleton-based frameworks that employ

high-level cost models.

7.1 Darlington’s group

Performance models are proposed in [46] for processor farms, divide

and conquer (DC), and pipeline skeletons. For example, a

performance model has been proposed for a divide and conquer

skeleton to provide a prediction of the execution time for given

program, which is used to guide resource allocation.

In this model, the total execution time required to solve a problem of

size N on P processors is given by:

 ∑ ()

 ()

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 77

Where TdivN is the time to divide a problem of size N, TcombN is the

time to combine the two results, and Tcomms is the communication time

between processors.

7.2 BSP-based Approaches

Several authors associate the BSP model with algorithmic skeletons

for performance optimisation.

For example, Skel-BSP [23, 47] is a subset of P3L that uses an

extension of the BSP model called the Edinburgh-Decomposable-BSP

model to achieve performance portability for skeletal programming.

EdD-BSP extends the BSP model by adding partition and join

operations to partition and reunify BSP submachines which allows

subset synchronisation as in D-BSP.

Compared to the standard BSP model, EdD-BSP replaces the g

parameter with two parameters, which are g∞ and N1/2, and then

estimates the cost of two kinds of supersteps:

a) The cost of computational supersteps is given by:

 T = W + hg∞(N1/2/h + 1) + L

b) The cost of partition and join superstep is given by L

Another BSP-based approach is Bulk-Synchronous Parallel ML

(BSML) [151].

BSBML is a functional data parallel language for programming BSP

algorithms using a set of high-level parallel primitives. It uses the BSP

model to predict the performance of a given program on a wide

variety of parallel architectures.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 78

7.3 P3L

P3L uses a variant of the LogP model to predict and optimise program

performance on parallel systems. An analytic model is presented in

[49] for the basic forms of parallelism to be used by the template-

based compiler of the P3L language.

This model is more complex than LogP, since it is intended to capture

several hardware features, such as the speed of processor, node

architecture, and network bandwidth and latency.

Here we briefly describe the analytical model for the high level

template that is related to this work.

The Map construct is implemented on an N dimension grid of

processors. The computation time T of input granularity k is given by:

 () (() ∏

)

Where:

Tc : seq. computation time.

di : data granularity for dimension i.

Tdis: data distribution time.

Tcol: time for collecting results.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 79

7.4 HOPP

The HOPP (Higher-order Parallel Programming) model [50, 51] is a

methodology based on the BMF (Bird-Meertens Formalism)[52],

where the program is expressed as a composition of higher-order

functions.

The HOPP model uses a cost model introduced in [52] to predict the

costs of programs. This cost model is implemented as an analyser for

calculating the costs of possible implementations for a given program

on a given distributed-memory machine.

In the HOPP model, the cost of a program is computed in terms of n

steps:

 ∑

 ∑

where Cpi is the cost of phase i which depends on the number of

processors and sequential implementation of the functions in that step,

and Ci,i+1 is the cost of communication that may be incurred between

step i and step i + 1.

7.5 SkelML

SkelML [53] gives performance models for a number of skeletons

such as pipeline, farm, and fold Processor Chain skeletons. These

models are based on the communication overhead and computation

time that are involved in application execution. The skeleton

performance models and profiling information help the SkelML

compiler to determine useful parallelism.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 80

8. Resource Metrics for Parallel Cost Models

The performance of parallel machines is dependent on the underlying

architecture features. These features are referred to as resource metrics

that characterise the parallel computational model. Thus, a

computational model can be identified by a set of these resource

metrics. We now consider some resource metrics that are visible in all

parallel computational models.

Number of processors the number of processor in the machine.

Communication Latency is the time needed to transfer a message

from one processor to another processor; this depends on both the

network topology and technology.

Communication Bandwidth is the amount of data that can be sent

within a given time; this is a limited resource in practice and depends

on the network interface.

Communication Overhead is the period of time that is needed by the

processor for sending and receiving message. The amount of overhead

depends on network topology features such as communication

protocols.

Computational power Computational power is the amount of work

finished by one processor in a given time for a specific task; this value

depends on the processor’s capabilities and the task being processed.

Synchronous/Asynchronous In a synchronous model, all processors

are synchronised after executing each instruction. Processors may run

semi asynchronously, where the computations occur asynchronously

within each phase and all processors are synchronised at each phase.

Table 1 shows how these resource metrics contribute in forming the

computational models considered above.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 81

Table 1: Resource metrics for parallel computation

9. Conclusion

Here, we have carried out the comparative systematic study of some

software cost estimation models in conjunction with their relevant

techniques. Although it would be very difficult to say, which model is

preeminent as it is vastly based on the size of software and certain

other underlying hardware specifications. We claim performance cost

models that based on architectural details of a parallel machine to

provide cost estimation of a given program on a given machine,

provides a reasonable trade-of between the accuracy and simplicity

needed for our heterogeneous skeletons.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 82

Reference

[1] P. B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW

PRAM: Accounting for Contention in Parallel Algorithms. In

Proceedings of the Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA '94, pages 638-648, Philadelphia,

PA, USA, 1994. Society for Industrial and Applied

Mathematics.

[2] P. Gibbons, Y. Matias, and V. Ramachandran. E_cient Low-

Contention Parallel Algorithms. In The 1994 ACM Symp. on

Parallel Algorithms and Architectures, pages 236-247, 1994.

[3] L. G. Valiant. A Bridging Model for Parallel Computation.

Commun. ACM, 33:103-111, August 1990.

[4] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions

and Answers about BSP. Scientific Programming, 6(3):249-

274, 1997.

[5] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau,

K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and R. H. Bisseling.

BSPlib: The BSP Programming Library. Parallel Computing,

24(14):1947-1980, 1998.

[6] A. Zavanella. Skel-BSP: Performance Portability for Skeletal

Programming. In Proceedings of the 8th International

Conference on High-Performance Computing and Networking,

HPCN Europe 2000, pages 290-299, London, UK, UK, 2000.

Springer-Verlag.

[7] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas.

Towards Efficiency and Portability: Programming with the

BSP Model. In Proceedings 216 Bibliography of the Eighth

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 83

Annual ACM Symposium on Parallel Algorithms and

Architectures, SPAA '96, pages 1-12, New York, NY, USA,

1996. ACM.

[8] A. Goldchleger, A. Goldman, U. Hayashida, and F. Kon. The

implementa-tion of the BSP Parallel Computing Model on the

InteGrade Grid Middle-ware. In Proceedings of the 3rd

International Workshop on Middleware for Grid Computing,

MGC '05, pages 1-6, New York, NY, USA, 2005. ACM.

[9] P. de la Torre and C. Kruskal. Submachine Locality in the

Bulk Syn-chronous Setting. In Luc Boug, Pierre Fraigniaud,

Anne Mignotte, and Yves Robert, editors, Euro-Par'96 Parallel

Processing, volume 1124 of Lecture Notes in Computer

Science, pages 352-358. Springer Berlin / Heidelberg, 1996.

10.1007/BFb0024723.

[10] B. H. Juurlink and H. G. Wijsho_. The E-BSP model:

Incorporating General Locality and Unbalanced

Communication into the BSP Model. In Luc Boug, Pierre

Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-

Par'96 Parallel Processing, volume 1124 of Lecture Notes in

Computer Science, pages 339-347. Springer Berlin

Heidelberg, 1996.

[11] L. G. Valiant. A Bridging Model for Multi-core Computing. In

Proceedings of the 16th annual European symposium on

Algorithms, ESA '08, pages 13-28, Berlin, Heidelberg, 2008.

Springer-Verlag.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E.

Santos, R. Subramonian, and T. von Eicken. LogP: Towards A

Realistic Model of Parallel Computation. In Proceedings of the

Fourth ACM SIGPLAN Symposium on Principles and

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 84

Practice of Parallel Programming, PPOPP '93, pages 1-12,

New York, NY, USA, 1993. ACM.

[13] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos,

K. E. Schauser, R. Subramonian, and T. von Eicken. LogP: A

Practical Model of Parallel Computation. Commun. ACM,

39(11):78-85, November 1996.

[14] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, and P.

Spirakis. BSP vs LogP. In Proceedings of the Eighth Annual

ACM Symposium on Parallel Algorithms and Architectures,

SPAA '96, pages 25-32, New York, NY, USA, 1996. ACM.

[15] T. Hoeer, L. Cerquetti, and F. Mietke. A Practical Approach to

the Rating of Barrier Algorithms Using the LogP Model and

Open MPI. In Proceedings of the 2005 International

Conference on Parallel Processing Workshops, ICPPW '05,

pages 562-569, Washington, DC, USA, 2005. IEEE Computer

Society.

[16] D. Culler, L. T. Liu, R. P. Martin, and C. Yoshikawa. LogP

Performance Assessment of Fast Network Interfaces, 1996.

[17] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C.

Scheiman. LogGP: incorporating long messages into the LogP

model | one step closer towards a realistic model for parallel

computation. In Proceedings of the seventh annual ACM

symposium on Parallel algorithms and architectures, SPAA

'95, pages 95-105, New York, NY, USA, 1995. ACM.

[18] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C.

Scheiman. LogGP: Incorporating Long Messages into the

LogP Model for Parallel Computation. Journal of Parallel and

Distributed Computing, 44(1):71-79, 1997.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 85

[19] F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: A Parallel

Computational Model for Synchronization Analysis. In

Proceedings of the Eighth ACM SIGPLAN Symposium on

Principles and Practices of Parallel Programming, PPoPP '01,

pages 133-142, New York, NY, USA, 2001. ACM.

 [20] J. L. Bosque and L. Pastor. A Parallel Computational Model

for Heterogeneous Clusters. IEEE Trans. Parallel Distrib.

Syst., 17:1390-1400, December 2006.

[21] Z. Li, P. H. Mills, and J. H. Reif. Models and Resource

Metrics for Parallel and Distributed Computation. In

Proceedings of the 28th Hawaii International Conference on

System Sciences, HICSS '95, pages 51-, Washington, DC,

USA, 1995. IEEE Computer Society.

[22] J. S. Vitter and E. A. M. Shriver. Optimal disk I/O with

Parallel Block Transfer. In Proceedings of the Twenty-Second

Annual ACM Symposium on Theory of Computing, STOC

'90, pages 159-169, New York, NY, USA, 1990. ACM.

[23] C. A. Moritz and M. Frank. LoGPC: Modeling Network

Contention in Message-Passing Programs. IEEE Trans.

Parallel Distrib. Syst., 12(4):404-415, 2001.

[24] T. Kielmann, H. E. Bal, and S. Gorlatch. Bandwidth-E_cient

Collective Communication for Clustered Wide Area Systems.

In Parallel and Distributed Processing Symposium, 2000.

IPDPS 2000. Proceedings. 14th International, pages 492 -499,

2000.

[25] F. Cappello, P. Fraigniaud, B. Mans, and A. L. Rosenberg.

HiHCoHP: Toward a Realistic Communication Model for

Hierarchical HyperClusters of Heterogeneous Processors. In

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 86

Proceedings of the 15th International Parallel & Distributed

Processing Symposium, IPDPS '01, pages 42-, Washington,

DC, USA, 2001. IEEE Computer Society.

[26] A. L. Rosenberg. Sharing PartitionableWorkloads in

Heterogeneous NOWs: Greedier Is Not Better. In Proceedings

of the 3rd IEEE International Conference on Cluster

Computing, CLUSTER '01, pages 124-, Washington, DC,

USA, 2001. IEEE Computer Society.

[27] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson,

J. D. Teresco, J. Faik, J. E. Flaherty, and L. G. Gervasio. New

Challenges in Dynamic Load Balancing. Appl. Numer. Math.,

52(2-3):133{152, February 2005.

[28] J. Faik, J. D. Teresco, K. D. Devine, J. E. Flaherty, and L. G.

Gervasio. A Model for Resource-aware Load Balancing on

Heterogeneous Clusters. Technical Report CS-05-01, Williams

College Department of Computer Science, 2005.

[29] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W.

N. Sharp, and Q. Wu. Parallel Programming Using Skeleton

Functions. In PARLE '93: Proceedings of the 5th International

PARLE Conference on Parallel Architectures and Languages

Europe, pages 146-160, London, UK, 1993. Springer-Verlag.

[30] A. Zavanella. Skeletons and BSP: Performance Portability for

Parallel Programming. PhD thesis, UNIPI, December 1999.

[31] F. Gava. BSP Functional Programming: Examples of a Cost

Based Methodology. In Proceedings of the 8th international

conference on Computational Science, Part I, ICCS '08, pages

375-385, Berlin, Heidelberg, 2008. Springer-Verlag.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 87

[32] D. Pasetto and M. Vanneschi. Machine-independent analytical

models for cost evaluation of template-based programs. In

PDP, pages 485{492, 1997.

[33] R. Rangaswami. Compile-Time Cost Analysis for Parallel

Programming. In Proceedings of the Second International

Euro-Par Conference on Parallel Processing-Volume II, Euro-

Par '96, pages 417-421, London, UK, 1996. Springer-Verlag.

[34] R. Rangaswami. A Cost Analysis for a Higher-order Parallel

Programming Model. PhD Thesis. University of Edinburgh,

Department of Computer Science, 1996.

[35] R. S. Bird. Algebraic Identities for Program Calculation.

Comput. J., 32(2):122-126, April 1989.

[36] D. B. Skillicorn and W. Cai. A Cost Calculus for Parallel

Functional Programming. J. Parallel Distrib. Comput.,

28(1):65{83, 1995.

[37] T. A. Bratvold. Skeleton-Based Parallelisation of Functional

Programs. PhD thesis, Heriot-Watt University, November

1994.

[38] D. G. Lowe. Object Recognition from Local Scale-Invariant

Features. In ICCV '99: Proceedings of the International

Conference on Computer Vision-Volume 2, page 1150,

Washington, DC, USA, 1999. IEEE Computer Society.

[39] D. G. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. Int. J. Comput. Vision, 60(2):91-110, 2004.

[40] S. Gupta. Performance Analysis of GPU Compared to Single-

Core and Multi-Core CPU for Natural Language Applications.

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 88

IJACSA - International Journal of Advanced Computer

Science and Applications, 2(5):50-53, 2011.

[41] M. McCool and S. D. Toit. Metaprogramming GPUs with Sh.

AK Peters Ltd, 2004.

[42] AMD Corporation. ATI Stream Computing User Guide,

Version 2.01. Technical report, 2010.

[43] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and

H. Kobayashi. Evaluating Performance and Portability of

OpenCL Programs. In The Fifth International Workshop on

Automatic Performance Tuning, UC Berkeley - CITRIS,

Sutardja Dai Hall, Berkeley, CA 94720, USA, June 2010.

[44] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J.

Ramanujam, A. Rountev, and P. Sadayappan. A Compiler

Framework for Optimization of A_ne Loop Nests for

GPGPUs. In Proceedings of the 22nd Annual International

Conference on Supercomputing, ICS '08, pages 225-234, New

York, NY, USA, 2008. ACM.

[45] S. Lee, S. Min, and R. Eigenmann. OpenMP to GPGPU: A

Compiler Framework for Automatic Translation and

Optimization. SIGPLAN Not, 44(4):101-110, February 2009.

[46] J. Hoberock and N. Bell. Thrust: A Parallel Template Library

@http://www.meganewtons.com, 2009.

[47] CUDPP: CUDA Data Parallel Primitives

Library@http://gpgpu.org/developer/cudpp, 2009.

[48] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A Portable

Skeleton Library for High-Level GPU Programming. In

Journal of Electronic Systems and Programming www.epc.ly

 Issue: 4 December 2021 Page 89

Proceedings of the 2011 IEEE International Symposium on

Parallel and Distributed Processing Workshops and PhD

Forum, IPDPSW '11, pages 1176-1182, Washington, DC,

USA, 2011. IEEE Computer Society.

[49] A. D. Malony, S. Biersdor_, S. Shende, H. Jagode, S. Tomov,

G. Juckeland, R. Dietrich, D. Poole, and C. Lamb. Parallel

Performance Measurement of Heterogeneous Parallel Systems

with GPUs. In Proceedings of the 2011 International

Conference on Parallel Processing, ICPP '11, pages 176-185,

 Washington, DC, USA, 2011. IEEE Computer Society.

[50] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka. An

Efficient, Model-based CPU-GPU Heterogeneous FFT

Library. In Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, pages 1-10, April

2008.

[51] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu.

Adaptive Optimization for Petascale Heterogeneous CPU/GPU

Computing. In Proceedings of the 2010 IEEE International

Conference on Cluster Computing, CLUSTER '10, pages 19-

28, Washington, DC, USA, 2010. IEEE Computer Society.

[52] V. Strassen. Gaussian Elimination is not Optimal. Numerische

Mathematik, 14(3):354-356, 1969.

[53] M. Aldinucci, M. Danelutto, and P. Teti. An advanced

Environment Supporting Structured Parallel Programming in

Java. Future Gener. Comput. Syst., 19(5):611{626, July 2003.

