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Abstract 

With the growth in heterogeneity, the current focus of designing 

parallel performance cost models is on providing low-level details of 

parallel execution to the programs to enable resource-aware 

partitioning and dynamic load balancing procedures, in particular, for 

heterogeneous parallel architectures. 

This Paper presents a survey of a classification of current and 

emerging cost models for parallel and distributed environments as 

well as algorithmic skeletons, and addressing major challenges such as 

complexity, target architectures, Optimisation and Skeleton-based 

Approachs. 
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1. Introduction  

Models of parallel computation play an important role in designing 

and optimising parallel algorithms and applications. These models 

assist the developer in understanding all-important aspects of the 

underlying architecture without knowing unnecessary details. 

Moreover, parallel computational models ware used to predict the 

performance of a given parallel program on a given parallel machine. 

The common way of predicting the performance of parallel program is 

to derive a symbolic mathematical formula that describes the 

execution time of that program. This formula has a set of parameters 

that usually include the size of program, number of processors, and 

other hardware and algorithm characteristics that affect the execution 

time of the program. These parameters will be given by a 

programmer, benchmarking, or profiling tools. 

Skeleton-based and similarly structured frameworks have employed 

these parallel computational models to predict the performance of the 

parallel algorithms in the early stages of the design process. 

Consequently, these computational models can assist and guide 

scheduling algorithmic skeletons on a wide variety of architectures. 

Several parallel computational models had been developed for 

parallel-distributed systems to guide parallel algorithm designers. 

Good general surveys of early research are given in [5, 6, 7, 10] and a 

more recent survey is given in [8]. 

In this paper, we survey several well-known parallel cost models that 

have been proposed for parallel and distributed environments as well 

as algorithmic skeletons. 

Finally, this survey doesn’t aim to give a comprehensive survey of 

cost models, which would be much beyond the scope of this report, 
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but we classify and discuss essential aspects of the existing 

performance cost models, and give references for further reading. 

2. The Family of PRAM Models 

The most widely-used cost model in parallel computing is the Parallel 

Random Access Machine (PRAM) model [9]. The PRAM model was 

based on the RAM model [10] of sequential computation. The model 

consists of a global shared memory and a set of sequential processors 

that operate synchronously. The model assumes that at each 

synchronous step, each processor can access any memory location in 

one unit time regardless of the memory location. The PRAM model 

provides a useful guide for parallel algorithm designers and thereby 

allows them to ignore all the architecture details of the underlying 

hardware and concentrate on application-specific issues. 

Despite the useful basis provided by the PRAM model for parallel 

algorithm design, it cannot reflect all the costs of a real parallel 

machine. This results in non-portable programs due to a number of 

assumptions made by the model by ignoring the cost of some parallel 

activities such as synchronisation, memory contention, and 

communication latency or bandwidth. 

Therefore, several realistic variants of PRAM-based models have been 

introduced to make PRAM more practical. These variants attempt to 

account for the cost issues of real parallel machines. For example, 

models such as Block PRAM (BPRAM) [11], Local-Memory PRAM 

(LPRAM) [12], and Asynchronous PRAMs [13] seek to include the 

latency cost with the standard PRAM model. 

Another PRAM variant is asynchronous PRAMs that add some degree 

of asynchrony into the basic PRAM model in order to ease the 

restriction on processors synchronisation. These models differ in the 

way of the processors are synchronised. They include the 
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Asynchronous Parallel Random Access Machine model (APRAM) 

[14] that addresses the synchronisation assumption of the basic PRAM 

model to allow asynchronous execution, and the Hierarchical PRAM 

(HPRAM) model [15], which uses the PRAM model as a sub-model, 

consists of a collection of synchronous PRAMs that operate 

asynchronously from each other. Another asynchronous model by 

Gibbons et al. [16] allows the processors to run in an asynchronous 

manner. 

The CRCW PRAM model [17] and the QRQW PRAM model [18, 19] 

account for memory locations contention, where the read and write to 

shared memory locations are done concurrently. 

3. BSP and Variants 

The Bulk Synchronous Parallel (BSP) model [20, 21] is a parallel 

computation model that provides a simple way of writing parallel 

programs for a wide range (architecture-independent) of parallel 

architectures by offering a bridging model that links software and 

architecture. In addition, it provides a straightforward way for realistic 

performance prediction for application design on a variety of different 

parallel architectures including distributed-memory systems, shared-

memory multiprocessors, and networks of workstations. Practically, 

the BSP model aims to provide a bridge model between the software 

and hardware. 

The BSP model consists of a collection of processors that 

communicate using message passing. The computations in the BSP 

model are formulated as a series of super steps. Conceptually, each 

super step is divided into three stages. In the first stage, all processors 

concurrently compute using only local data. In the second stage, 

processors exchange messages with each other. In the third stage, all 

of the processors execute a barrier synchronisation, after they finished 

sending and receiving messages. 
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Compared with the PRAM model the BSP model is more realistic, 

since it accounts for two cost issues of the real parallel machines, 

namely communication cost and memory latency cost. 

Since BSP programs are based on sequential super steps, the model 

provides a very straightforward approach to cost estimation by firstly, 

calculating the cost of each super step, and secondly, calculating the 

cost of the whole BSP program by summing the cost of the super 

steps. The cost of each super step in a BSP program is given by: 

                  

Where w reflects the cost of the longest running local computation in 

any of the processors, l is a constant cost (the cost of the barrier 

synchronisation) that depends on the performance of the underlying 

hardware, h is the number of messages sent or received per processor 

and g captures the measurement of the ability of the communication 

network to deliver these messages. A number of parallel 

implementations have been proposed using the BSP model [22, 23, 

24, 25];  

4. The LogP Model Family 

LogP [29, 30] is an architecture-independent parallel computation 

model for designing and analysing parallel algorithms. It is a model 

for distributed-memory multiprocessors where processors 

communicate using message passing. LogP provides a good balance 

between abstraction and simplicity by using a few parameters to 

characterise the parallel computers and enabling the user to ignore all 

unnecessary details. 

Like the BSP model, LogP is more realistic, since both models try to 

capture the communication latency and bandwidth through parameters 

[31], and both models allow the processors to work in a completely 

asynchronous manner. 
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Nevertheless, the LogP model gives a more realistic picture than BSP, 

since LogP has more control over the machine resources by capturing 

the communication overhead. Furthermore, LogP can be use in 

parallel systems that are constructed from a collection of complete 

computers connected by a communication network. 

Conceptually, the LogP model consists of a collection of sequential 

processors interacting through a communication network by 

exchanging messages, where each processor has direct access to a 

local memory. The parallel program is executed in an asynchronous 

way by all processors in the LogP machine. 

The LogP model seeks to capture the communication network cost by 

describing the parallel computer in terms of four elements: 

P: the machine’s number of processors. 

g: communication bandwidth for short message (gap). 

L: communication delay (latency). 

o: communication overhead (overhead) . 

The latency is an upper bound on the time required to send a message 

from a source processor to its target processor. The overhead is the 

fixed amount of time that a processor requires to prepare for sending 

or receiving a message; during this time, the processor cannot perform 

other operations. The gap is the minimum time interval between 

sending two messages on the same processor. The gap is the inverse 

of the available per-processor communication bandwidth for a short 

message. Several researchers [31, 32, 33] have shown that the LogP 

model delivers good and accurate predictions for small messages. A 

number of different extensions of the classic LogP model have been 

developed to improve prediction accuracy by addressing different 

communication network issues: 



Journal of Electronic Systems and Programming                                        www.epc.ly 

 

 Issue: 4   December 2021                                                                                               Page 71 

4.1 LogGP 

The LogGP model by Alexandrov et al.[34, 35] is an extension of the 

basic LogP model. Since LogP facilitates only short-message 

communication transmission between processors and ignores long 

messages, the LogGP model extended LogP to provide a simple linear 

model that can model both short- and long-messages. 

Just as in the original LogP model, LogGP is developed for distributed 

memory multiprocessors, where each processor has access to local 

memory. The processors work in an asynchronous way and 

communicate with other processors by point-to-point messages. 

LogGP uses the parameters (latency, overhead, gap, and number of 

processors) that were introduced by the LogP model to characterise 

communication performance. In addition, it introduces a new 

additional parameter, Gap per byte, G, which captures the 

communication bandwidth for long message. Thus, the LogGP model 

uses 1/g for short message and 1/G for long message. In the LogP 

model, sending a k bytes message between two processors requires 

sending [k/w] messages, where w is the underlying message size of 

the machine. This takes: 

  ([
 

 
]   )     (   )             

 

While sending everything as a single large message in the LogGP 

model takes: 

 

  (   )               
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4.2 LogGPS 

The LogGPS model [36] is a parallel computational model that 

extends LogGP to include the synchronisation cost. As in the original 

LogP model, LogGP eliminates the synchronisation cost that is needed 

in other models such as PRAM and BSP. This elimination might make 

LogGP not accurate enough, while it ignores the need for 

synchronisation when sending a long message in programs that use 

high-level communication libraries such as MPI. The LogGPS model 

has been proposed to address this shortcoming in LogGP. 

Sending a long message between two processors is often performed by 

sending a small message to the receiver to check if it is ready to 

receive the original message. The process causes the sender processor 

to be synchronised with the receiver processor and adds a 

synchronisation cost to the overhead. Thus, the LogGPS model adds 

one additional parameter, S, which reflects the message-size threshold 

for synchronising sends. 

4.3 HLogGP 

Another extension of the LogGP model is the Heterogeneous LogGP 

[37] model. HLogGP has been specifically proposed for 

heterogeneous parallel systems to capture the heterogeneity in both 

communication networks and computational nodes. Since the 

underlying architecture of the LogGP model is very similar to the 

cluster architecture, it is considered an appropriate starting point for 

developing HLogGP. 

The HLogGP model extends LogGP by transforming its scalar 

parameters into matrices. Conceptually, the parameters for overhead 

and gap are replaced by vector parameters, and latency and Gap is 

replaced by matrix parameters. Furthermore, to capture the 

heterogeneity in the computational nodes, the parameter for the 
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number of processors is replaced by a computational power vector, 

which describes the physical features for every node in the system. 

The model has been shown to deliver an accurate prediction on 

heterogeneous clusters. 

4.4 Other LogP extension 

Besides the previously mentioned LogP extensions, other extensions 

have been proposed that aim to address different issues in 

communication. We briefly discuss some here: 

LogP-HMM [38] is a parallel computational model based on the 

LogP model. The idea of LogP-HMM is to develop an accurate model 

that accounts for the impact of both network communication and 

multilevel memory on the performance of parallel algorithms and 

applications. Therefore, the LogP HMM model extends LogP with the 

HMM model [39], where the LogP model deals with network 

communication and the HMM model addresses the memory hierarchy. 

LoGPC [40] is a simple model that extends LogP and its extension 

LogGP to address another aspect of communication networks. It uses 

the features of both models to account for short message as well as 

long message bandwidth. Practically, the LoGPC model is intended to 

capture the impact of message transmissions of size m. 

Parametrised LogP [41] or (pLogP for short) is a slight extension of 

the LogP and LogGP models. This model can accurately predict the 

completion time of collective operations in message passing models 

such as MPI. 

Five parameters are used in the pLogP model to characterised the 

network. Like the LogP model, it uses P as the number of processors 

and L is the end-to-end latency, but the original parameters o and g are 

replaced by a function of message size, where os (m) and or (m) are 
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the sender and receiver overheads of the message size m, and g(m) is 

the delay between consecutive message transmissions of size m. 

5. HiHCoHP 

The HiHCoHP model [42, 43] is a realistic communication model for 

hyperclusters (multi-level clusters of clusters of processors) with 

heterogeneous processors. It aims to capture the important features of 

a real hypercluster such as bandwidth and transmission cost. 

The HiHCoHP model is based on several parameters that reflect the 

heterogeneity of hyperclusters: 

• Pi (“computing power”): HiHCoHP considers the computing power 

as N heterogeneous nodes that may differ in computational power 

(computation and memory speed). 

• (“ message processing”): the Pa and Pb set up fixed communication 

cost is (σa
 (k)

 +  σb
(k)

 ); and the cost of message packing in Pa is πa
(k)

 

and message unpacking in Pb is  πb
(k)

 . 

• λ
(k)

 (“network latency”): or the end-to-end latency is the amount that 

is required to send one packet between the source node and 

destination node at level-k of the network. 

• β
(k)

 (“link-bandwidth”): the amount of data that can be sent between 

two nodes at level-k of the network. 

• k
(k) 

(“Network capacity”): the maximum number of packets that can 

be transmitted at once.  

So the total end-to-end communication time of sending p-packet 

message from node Pa to node Pb is given by: 

           (σa 
(k)

 + σb
(k)

 ) + (πa
(k)

 +  πb
(k)

 )p + λ
(k)

 + ∆(p) 
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Where ∆(p) = (p−1)/β
(k)

 in a pipeline network, and ∆(p) = λ
(k)

(p−1) in 

a store-and-forward network. 

6. DRUM 

Another type of parallel computational model are architectures-aware 

cost models. One of the well-known models is the Dynamic Resource 

Utilisation Model [44, 45] or (DRUM). DRUM is developed to 

support resource-aware load balancing in a heterogeneous 

environment such as clusters and hierarchical clusters (clusters of 

clusters, or clusters of multiprocessors). 

DRUM accounts for the capabilities of both network and computing 

resources. In particular, DRUM is intended to encapsulate information 

about the underlying hardware, and provide monitoring facilities for 

hardware capabilities evaluation. Benchmarks are used to assess the 

capabilities of computational, memory and communication resources. 

Each node in the tree structure of the DRUM model has been given a 

single value called “power”, which represents the portion size of the 

total load that can be assigned to that node based on its processing and 

communication power. 

The power of node n in the DRUM model is calculated as the 

weighted sum of processing power pn and communication power cn: 

 

  powern = wn
comm

 cn + wn
cpu

 pn,  wn
comm

 + wn
cpu

 = 1 
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7. Skeletons 

To improve the performance of parallel applications, performance cost 

models are associated with algorithmic skeletons to accurately predict 

the costs of parallel applications. More precisely, the aim of these 

performance models is to assist the parallel skeletons, either implicitly 

or explicitly, to guide scheduling on a wide variety of architectures. 

This section deals with skeleton-associated performance cost models. 

Several skeleton-based and similarly structured frameworks have 

employed performance cost models for various kinds of skeletons. 

Some of the skeleton-based frameworks employ the well-known cost 

models and their variants such as the models that were previously 

mentioned, and others use their own performance prediction tools to 

estimate the performance of a given program. 

Here, we briefly outline the skeleton-based frameworks that employ 

high-level cost models. 

7.1 Darlington’s group 

Performance models are proposed in [46] for processor farms, divide 

and conquer (DC), and pipeline skeletons. For example, a 

performance model has been proposed for a divide and conquer 

skeleton to provide a prediction of the execution time for given 

program, which is used to guide resource allocation. 

In this model, the total execution time required to solve a problem of 

size N on P processors is given by: 

      ∑ (                           )

   ( )

   

         



Journal of Electronic Systems and Programming                                        www.epc.ly 

 

 Issue: 4   December 2021                                                                                               Page 77 

Where TdivN is the time to divide a problem of size N, TcombN is the 

time to combine the two results, and Tcomms is the communication time 

between processors. 

7.2 BSP-based Approaches 

Several authors associate the BSP model with algorithmic skeletons 

for performance optimisation. 

For example, Skel-BSP [23, 47] is a subset of P3L that uses an 

extension of the BSP model called the Edinburgh-Decomposable-BSP 

model to achieve performance portability for skeletal programming. 

EdD-BSP extends the BSP model by adding partition and join 

operations to partition and reunify BSP submachines which allows 

subset synchronisation as in D-BSP. 

Compared to the standard BSP model, EdD-BSP replaces the g 

parameter with two parameters, which are g∞ and N1/2, and then 

estimates the cost of two kinds of supersteps: 

a) The cost of computational supersteps is given by: 

 

                  T = W + hg∞(N1/2/h + 1) + L 

 

b) The cost of partition and join superstep is given by L 

Another BSP-based approach is Bulk-Synchronous Parallel ML 

(BSML) [151].  

BSBML is a functional data parallel language for programming BSP 

algorithms using a set of high-level parallel primitives. It uses the BSP 

model to predict the performance of a given program on a wide 

variety of parallel architectures. 
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7.3 P3L 

P3L uses a variant of the LogP model to predict and optimise program 

performance on parallel systems. An analytic model is presented in 

[49] for the basic forms of parallelism to be used by the template-

based compiler of the P3L language. 

This model is more complex than LogP, since it is intended to capture 

several hardware features, such as the speed of processor, node 

architecture, and network bandwidth and latency. 

Here we briefly describe the analytical model for the high level 

template that is related to this work. 

The Map construct is implemented on an N dimension grid of 

processors. The computation time T of input granularity k is given by:  

 

 

 ( )    (    ()     ∏  

 

   

     ) 

 

Where: 

Tc : seq. computation time. 

di : data granularity for dimension i. 

Tdis: data distribution time. 

Tcol: time for collecting results. 

 



Journal of Electronic Systems and Programming                                        www.epc.ly 

 

 Issue: 4   December 2021                                                                                               Page 79 

7.4 HOPP 

The HOPP (Higher-order Parallel Programming) model [50, 51] is a 

methodology based on the BMF (Bird-Meertens Formalism)[52], 

where the program is expressed as a composition of higher-order 

functions. 

The HOPP model uses a cost model introduced in [52] to predict the 

costs of programs. This cost model is implemented as an analyser for 

calculating the costs of possible implementations for a given program 

on a given distributed-memory machine. 

In the HOPP model, the cost of a program is computed in terms of n 

steps: 

     ∑   

   

   

 ∑       

     

   

   

where Cpi is the cost of phase i which depends on the number of 

processors and sequential implementation of the functions in that step, 

and Ci,i+1 is the cost of communication that may be incurred between 

step i and step i + 1. 

7.5 SkelML 

SkelML [53] gives performance models for a number of skeletons 

such as pipeline, farm, and fold Processor Chain skeletons. These 

models are based on the communication overhead and computation 

time that are involved in application execution. The skeleton 

performance models and profiling information help the SkelML 

compiler to determine useful parallelism. 
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8. Resource Metrics for Parallel Cost Models 

The performance of parallel machines is dependent on the underlying 

architecture features. These features are referred to as resource metrics 

that characterise the parallel computational model. Thus, a 

computational model can be identified by a set of these resource 

metrics. We now consider some resource metrics that are visible in all 

parallel computational models.  

Number of processors the number of processor in the machine. 

Communication Latency is the time needed to transfer a message 

from one processor to another processor; this depends on both the 

network topology and technology. 

Communication Bandwidth is the amount of data that can be sent 

within a given time; this is a limited resource in practice and depends 

on the network interface. 

Communication Overhead is the period of time that is needed by the 

processor for sending and receiving message. The amount of overhead 

depends on network topology features such as communication 

protocols. 

Computational power Computational power is the amount of work 

finished by one processor in a given time for a specific task; this value 

depends on the processor’s capabilities and the task being processed. 

Synchronous/Asynchronous In a synchronous model, all processors 

are synchronised after executing each instruction. Processors may run 

semi asynchronously, where the computations occur asynchronously 

within each phase and all processors are synchronised at each phase. 

Table 1 shows how these resource metrics contribute in forming the 

computational models considered above. 
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Table 1:  Resource metrics for parallel computation 

 

 

9. Conclusion  

Here, we have carried out the comparative systematic study of some 

software cost estimation models in conjunction with their relevant 

techniques. Although it would be very difficult to say, which model is 

preeminent as it is vastly based on the size of software and certain 

other underlying hardware specifications. We claim performance cost 

models that based on architectural details of a parallel machine to 

provide cost estimation of a given program on a given machine, 

provides a reasonable trade-of between the accuracy and simplicity 

needed for our heterogeneous skeletons. 
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